
Towards Adaptive Covert Communication System

Fedor V. Yarochkin, Shih-Yao Dai, Chih-Hung Lin ∗, Yennun Huang∗, Sy-Yen Kuo
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

{sykuo@cc.ee.ntu.edu.tw}

Abstract

Covert channels are secret communication paths, which
existance is not expected in the original system design.
Covert channels can be used as legimate tools of censor-
ship resistance, anonimity and privacy preservation to ad-
dress issues with ”national” firewalls, citizen profiling and
other ”unethical” uses of Information Technology. Cur-
rent steganographic methods that implement covert chan-
nels within network traffic, are highly dependent on par-
ticular media data or network protocol to hide data. In
this paper we investigate the methods and an algorithm
for implementing adaptive covert communication system
that works on real-world Internet, capable of using multi-
ple application-level protocols as its communication media
and can be implemented as network application, therefore
requires no system modifications of communicating nodes.
The key difference from previous solutions is the use of
adaptive redundant mechanism, which allows real-time un-
derlying protocol switching and adaptation to the dynamic
network configuration changes.

Keywords: self-adaptation and self-organization,
covert-channels, steganography

1. Introduction

Censorship and information access control is one of
common human right violations, comitted by oppressive
political regimes or abusive corporations. Therefore, the
clandestine communication methods and communication
methods that allow communication parties to preserve se-
crecy and anonymity has been of a certain interest recently
in academic community[18],[2],[8],[6], [13].

However these implementations relay on a
single network or application protocol, such as

∗Chih-Hung Lin and Yennun Huang are with Institute for Information
Industry, Taipei, Taiwan

HTTP/HTTPS[8],ICMP[14], TCP/IP[11], DNS[3] or
SMTP[5], to build communication links. Therefore in
censored network it would be enough to restrict or block
given protocol to effectively defeat the covert channel
communication ability. Also, such implementations as [6]
and [13] sacrifice protocol performance and robustness
in favour of preserving secrecy. We think that in real-
world Internet such degree of secrecy is unnecessary, as
the majority of Internet cencorship implementations are
implemented using automated tools.[16][10]

Therefore there should be an option for the covert chan-
nel user to be able to choose the degree of secrecy vs. per-
formance, that she may desire.

In particular, in the past few years there was obvious in-
terest in building robust and high-rate covert channels using
existing network infrastructure[17]. However these designs
still suffer from the same problem of relaying on single net-
work protocol to communicate. Therefore we see the flex-
ibility and adaptability to the dynamic network changes as
one of the key requirements to the robust, high-performance
covert communication channel systems.

Additionally it is extremely important to be able to de-
tect and recover possible communication errors, which may
occur due to intermediate nodes malfunctioning or mali-
cious activity. Therefore we propose a network communi-
cation framework that implements network discovery func-
tion, adaptive mechanisms with pluggable network proto-
cols architecture and optional voting mechanism for error
detection in order to cope with dynamic network configura-
tion changes while maintaining persistency of covert com-
munication channels.

These channels,when implemented with error detection
mechanism, include redundancy options, so the transmis-
sion of equivalent data is performed over a number of un-
derlying channels (variety of protocols and protocol con-
figurations). And the voting mechanism used to identify
possible data alteration or communication error.

The adaptive mechanisms are also designed to detect
possible interruptions in the communication channel, which

may be caused by changes within hostile network environ-
ment (such as firewall or network configuration changes),
and are capable of real-time adapting the network com-
munication media to re-establish communication link. An
architecture adopting diverse redundant network protocol
stacks is proposed for that purpose.

The rest of the paper is organized as follows: Section 2
presents background information and introduces proposed
communication protcol, Section 3 discusses detectability of
proposed communication protocol. Section 4 discusses ad-
vantages and disadvantages of proposed model. Section 5
discusses implementation issues and performance evalua-
tion, Section 6 makes conclusive remarks, Section 7 pro-
poses several ideas for future work and Section 8 includes
references to web resources, where discussed implementa-
tion code shall be available.

2. Communication Protocol

2.1. Threats and Model

Any network is a dynamic environment, which does not
guarantee persistancy of its nodes. One of the key issues,
which a covert communication protocol would have to deal
with is dynamic network configuration changes, such as net-
work routing changes, firewall configuration changes and
so on. Therefore a reliable covert communication protocol
must be able to detect such configuration changes and be ca-
pable of adapting to it in order to preserve communication
link.

On the other hand, the framework must avoid using net-
work protocols, which may appear to be unusual within op-
erating network environment, as such protocols are most
likely to be blocked on firewalls, and attempts to commu-
nicate using these protocols might be detected by Intru-
sion Detection Systems (IDS), which use anomaly detection
mechanisms to detect suspicious activities.

Our model would look as follows: we have two com-
municating agents A1 and A2 with subset of communica-
ble protocols P1 and P2 respectevely. Agent A1, in or-
der to communicate with Agent A2, must detect a sub-
set of communicable protocols P1 so that P1 ∩ P2 (proto-
cols, which can be received by Agent 2) and this subset of
P1 ∩ P2 /∈ Pb, where Pb is set of protocols, which are not
routed, or blocked by the network environment.

In proposed framework, the ”network environment
learning” phase is focused on learning the subsets of Pi for
each communicating agent, while The protocol handshake
is the process of finding such intersection P1 ∩ P2 ⇒ P12
such that P12 /∈ Pb.

While designing this framework we focus on reliability
of the communication framework that uses covert channels,
embedded into different protocols to communicate. We do

not focus on detectability of each protocol covert channel
implementation on the moment 1

2.2. Protocol Design

A protocol is a distributed algorithm that solves a prob-
lem in a distributed system[7]. In our context we propose
adaptive covert channel communication mechanism using
a set of protocol modules which are distributed across the
machines. The set of protocol modules are organized in
protocol stack. Each of the protocol modules is designed to
embed communication data within one of the existing net-
work protocols (plain UDP, plain TCP,DNS, SMTP and so
on) in a manner, so that communication channel would not
be detected using anomaly detection techniques.

The decision was taken to use application-level protocols
in order to be able to tunnel traffic through application-level
gateways (such as XMPP servers,SMTP hosts, DNS query
forwarding services, HTTP proxies and so on). Methods
of forwarding traffic is not within the scope of this paper.
These methods are usually specific to each protocol and
shall be only briefly discussed with references for further
information.

The organization of protocol modules in stack is not
strictly layered, instead, the protocol modules can cooperate
with other protocol modules in the same stack. The execu-
tion of the protocol modules is driven by events.

Each of the protocol modules has one or more handlers,
where each of the handlers is designed to handle a particular
event. When event occurs, all handlers that are bound to this
event are executed. Priority is used to control the execution
process.

The protocol execution is divided into 2 basic phases:

• Network Environment Learning Phase

• Communication Phase

During the Network Environment Learning Phase (NEL)
each of the agents Ai is learning about used protocols by
passively monitoring network traffic on one or more net-
work interfaces. Identified protocols Pi are matched to the
subset of protocols pi, which each of the agents is capable
of communicating with (has modules, which support these
protocols), and only a subset of Pi∩pi will be used in com-
munication.

Once the initial information gathering phase (NEL) is
completed, agents are ready communicate. NEL process
does not stop at this point and continues to monitor net-
work environment in order to identify possible changes in
network protocol usage patterns.

1Covert channels within the Internet standard protcols have been ana-
lyzed in [1], [12], [15], in this paper we used simplified implementations
for XMPP, TCP on arbitrary port, and UDP on arbitrary port protocols.

2

Suppose we want agent A1 to communicate with agent
A2. The handshake process takes place in order to establish
communication link between A1 and A2 before A1 and A2

can exchange the data. During this process the agent A1

uses one of the protocols from subset Pi ∩ pi to attempt to
establish the communication.

The loaded protocol module sends requests, a sequence
of packets which identify communication attempt using
specific protocol modules.

One or more protocols from the subset Pi∩pi can be ac-
tivated during initial handshake. In this case a burst method
may be used to collect and transmit these packets simulta-
neously.

Some of the requests, which belong to set of ”blocked”
protocols Pb will be discarded by the network environment
and only P1 /∈ Pb requests will reach the agent A2.

One of the goals of NEL phase is to minimize number of
packets blocked during the communication attempts, as this
may unveil the secret communication attempt.

If two or more packets reach the agent A2, the agent
loads the protocol modules, which it has available for com-
munication P2 ∩ p2 /∈ Pb and issues the responses. Con-
firmation from A1 on used protocol module is expected to
select one of the protocol modules for communication and
start actual data exchange process.

Round-Trip Time (further RTT) is calculated when re-
sponse is received. This RTT value is noted for each of
the protocols pi and later used to detect connection drops,
packet drops and network configuration changes.

Data transmission process - during this process the ac-
tual data transmission takes place. The data is transferred
using the selected data transmission module. The keep-alive
queries are sent on fixed interval to ensure that communi-
cation channel over selected protocol is still available. In
case if keep-alive response time exceeds RTT ∗ 2, the re-
handshake phase is initiated. During this phase the commu-
nication sides are to negotiate new protocol module, which
should be different from the modules, used at the previous
step.

A success score is maintained for each of the protocol
modules pi and this score is used in empirical formula,
which selects one of possible protocols for communication
during the handshake process.

2.3. Covert Operation

The proposed protocol allows two nodes to communicate
by embedding communication data into the application-
level protocols, which are observed to be used within ex-
isting network environment. This method is much more
efficient than simple tunneling of the communication data
within network layer protocol, as this would allow parties to

communicate even if no direct network connection is possi-
ble between two communicating agents.

2.4. Protocol modules grouping

Data transmission modules maybe grouped in particular
groups so only one member of a group can be selected for
communication process at any time. This is done to avoid
having data transmission modules that use same or similar
underlying protocol for data transfer, as this may affect ef-
ficiency of the voting mechanism check.

2.5. Design of Protocol Modules

Methods, using which the actual data transmission mod-
ules are implemented, are not restricted by any of exist-
ing protocol specification. For example DNS packet pay-
load may be used as data transmission medium, padding in
Ethernet frames may also be utilized, when communicated
party is connected directly using Ethernet cable.

More details on embedding covert communication data
into Internet protocols could be found in [1], [12], [15][9].

2.6. Design of Adaptive Algorithm

A very simple, score-based adaptive algorithm is pro-
posed for the current implementation, which is shown on
Figure 1. The algorithm uses the protocol module ”suc-
cess score” to select next communication module from the
list of available protocol modules. The ”success score” of
each protocol module represents estimated probability of
how successeful each protocol module would be to establish
connection. The ”success” rate is calculated using empirical
formula that uses protocol statistic data from network mon-
itoring component (to obtain list of currently active network
protocols) and historical record of modules, which were, or
were not successefully used in previous connections.

Random factor is introduced to provide algorithm with
the capability of identifying network changes, which could
not be observed from the network traffic monitoring data
and historical listing of previously successeful modules.

Obviously, it should be possible to use other, more com-
plicated adaptive methods (for example those, which would
utilize Neural Networks) in place of currently suggested al-
gorithm. These algorithms could be the subject of our fur-
ther research.

2.7. Error Detection mechanisms

It might be possible to implement communication qual-
ity detection mechanisms, which could detect a subclass
of communication errors or attacks against communication
channel

3

Figure 1. Implementation Diagram

For example a voting mechanism and simultaneous
multi-protocol communication can be used to detect possi-
ble data alteration due to communication errors or man-in-
the-middle attacks. This mechanism would use 3 protocols
to transmit data simultaneously and the voting mechanism
would be used to identify whether possible data alteration
took place.

Communication link quality detection mechanism could
be implemented to detect various low-level communication
errors, such as connection timeout errors, routing errors and
so on. Once communication error is detected, the system
may be required to re-negotiate communication protocol.

3. Detectability and Robustness of the Covert
Operation

The proposed approach makes it harder to detect covert
communication channels using standard signature based in-
trusion detection systems, which target at picking up com-
munications at certain ports or protocols with certain pay-
loads. The volatility of the protocol modules makes it possi-
ble to dinamically update sets of communicable protocols,
if communication over certain protocols was detected and
blocked.

The protocol normalization based detection techniques,

such as mentioned in [4] may detect particular covert
channel communication that uses some particular proto-
col. However even if the detected protocol is identified and
blocked by ”the authority”, this would not have critical im-
pact on the communicability of the framework as long, as
other communication protocols are available.

4. Advantages and Disadvantages of Adaptive
Protocol

Reliability of the data transmission process is the pri-
mary advantage of using such protocol. When the frame-
work is in use, communication between two given parties
does not depend on actual communication medium imple-
mentation. Such mediums can be loaded and unloaded dy-
namically and adapt to changing environment.

The complexity and data overhead within the underly-
ing application-level protocols are obvious disadvantages of
applying such framework, but it is known fact that there s
no win-win solution in security, and data overhead is being
traded for additional reliability features of the communica-
tion link.

Additionally, intelligent (instead of random) selection
of protocol modules (based on success score) may signif-
icantly minimize data overhead in the communication pro-

4

cess and ”noise” on the network layer.

5. Performance evaluation

To evaluate the performance of the proposed covert
channel communication system, the proposed algorithm
was implemented in C code with loadable modules for each
of the network protocols.

Three protocols were selected for performance evalua-
tion testing: XMPP protocol, TCP protocol (arbitrary port)
and UDP protocol (arbitrary port). The statistical data be-
low was collected using implementation of TCP connection
forwarding on a number of different ports, which represents
different protocol modules in proposed algorithm.

The basic outline of implemented software component
was demonstrated on the diagram (Figure 1). The tested
network environment was implemented within two physi-
cal Ethernet segments segregated by a router in the middle.
The testing process starts with initializing the network en-
vironment, which would block a set of TCP and UDP pro-
tocols on the router. A script was used so simulate legimate
communication between two nodes on arbitrary port. The
purpose of evaluation was to verify that the system is capa-
ble of identifying usable protocols within the network envi-
ronment and establish the communication link between two
nodes.

”Random” configuration changes on the router were in-
troduced to change network environment settings every N
number of seconds.

5.1. Results

During the evaluation process, the network configuration
changes occurred 200 times forcing the covert channel to re-
establish active connection. The connection recovery time,
number of failed attempts per successeful connection and
data overhead for different network protocol modules were
calculated and are presented on the following diagrams.

During the testing process, the client side algorithm was
executed in two modes:

• With Adaptive Algorithm. The implemented Adaptive
Algorithm used simple protocol module success score,
which signifies how ”successeful” connection with this
protocol module could be. This ”success score” is cal-
culated using current network traffic monitoring snap-
shot and statistics of previous successeful connections.
The result is presented on Figure 2 and 3. The algo-
rithm keeps track of successfully used modules by use
of ”success” score, and the score affects probability of
a module being selected during next step.

• The results of algorithm execution when protocol mod-
ules were selected randomly, is presented on Figure 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140 160 180 200

T
im

e(
se

c)

Connections

Reconnection Time with Adaptive Algorithm

Figure 2. Reconnection Time for test phase
with adaptive algorithm

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180 200

F
ai

le
d

at
te

m
pt

s

Successeful connects

Number of Failed Attempts with Adaptive Algorithm

Figure 3. Number of failed connect attempts
per successeful connect for test phase with
adaptive algorithm

5

and 5. In this case algorithm selects modules on ran-
dom basis. It should be noted that handshake process
was observed to be much slower when Application-
level protocol (XMPP) was used.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

T
im

e(
se

c)

Connections

Reconnection Time with Random Module selection(s)

Figure 4. Reconnection Time for algorithm
testing with random protocol module selec-
tion

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160 180 200

F
ai

le
d

at
te

m
pt

s

Successeful connects

Number of Failed Attempts with Random Module Selection

Figure 5. Number of failed attempts per suc-
cesseful connect for algorithm testing with
random protocol module selection

As it could be observed from these diagrams, the appli-
cation of adaptive protocol sufficiently reduces reconnec-
tion time and minimizes the number of failed attempts per
successeful connection, which also should overall decrease
detectability of covert communication system.

The estimated connection overhead values were calcu-
lated by taking average amount of transmitted ”protocol”

Estimated Connection Overhead
Protocol Average Overhead (bytes/frame)
XMPP over 100 bytes (XML)

Plain UDP 28-30 bytes
Plain TCP 40 bytes
ICMP echo 28-30 bytes

data that has to be transmitted along with original data
frame to ensure the frame delivery to the target.

6. Conclusion

In this paper we proposed a different approach to im-
plement adaptive covert communication channel that is ab-
stracted from physical network protocols, which carry ac-
tual data payload. Use of frameworks like this may allow
creative use of existing network protocols to perform data
transmission as such data may be placed in unused, or re-
served fields. If data corruption occurs over particular links
(i.e. links that may actually utilize selected fields), such pro-
tocol modules may be simply dropped without fear of losing
communication. Use of such communication frameworks
would also allow to create network stacks, that dynamically
adapt to changing network environment.

7. Further work

Point to Point (P2P) communications have been an
emerging trend in recent few years. Suggested covert com-
munication channel algorithm may also be used in context
of point to point communication. Interesting research di-
rection would be to design message routing and message
forwarding algorithms for nodes to communicate reliably
in P2P fashion.

Adaptive algorithms for communication protocol mod-
ule selection could be an interesting theme for additional
research. Apparently different adaptive algorithms may per-
form differently within different network environments.

8. Availability

Developed application is free software, released under
GNU General Public License and will be shortly available
via HTTP from

http://o0o.nu/rebounce

Acknowledgement

This study is conducted under the ”III Innovative and
Prospective Technologies Project” of the Institute for In-
formation Industry which is subsidized by the Ministry of
Economy Affairs of the Republic of China.

6

References

[1] M. Bauer. New covert channels in HTTP: adding unwitting
Web browsers to anonymity sets. In Proceedings of the 2003
ACM workshop on Privacy in electronic society, pages 72–
78, 2003.

[2] S. Gianvecchio. Model-Based Covert Timing Channels: Au-
tomated Modeling and Evasion. In Proceedings of Recent
Advances in Intrusion Detection (RAID), 2008.

[3] T. Gil. IP-over-DNS using NSTX.
http://thomer.com/howtos/nstx, 2005.

[4] Z. Kwecka. Application Layer Covert Channel Analysis
and Detection. In Technical Report, Napier University Ed-
inburgh., 2006.

[5] M. Lundstrom. MailTunnel - IP over SMTP tunnel.
http://gray-world.net/tools/mailtunnel-0.2.tar.gz, 2000.

[6] M. E. E.-Z. Magdy Saeb, Eman El-Abd. On covert data com-
munication channels employing DNA recombinant and mu-
tagenesis based steganographic techniques. In Proceedings
of the 2007 annual International Conference on Computer
Engineering and Applications, Jan. 2007.

[7] A. S. Oliver Rutti, Pawel T. Wojciechowski. Service inter-
face: a new abstaction for implementing and composing pro-
tocols. In Symposium on Applied Computing, Proceedings of
the 2006 ACM symposium and Applied Computing, 2006.

[8] P. S. Roger Dingledine, Nick Mathewson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th Usenix
Security Symposium. Usenix Association, 2004.

[9] P. B. S. Zander, G. Armitage. Covert Channels in the IP Time
To Live Field. In Proceedings of Australian Telecommunica-
tion Networks and Applications Conference (ATNAC), 2006.

[10] P. B. S. Zander, G. Armitage. A Survey of Covert Channels
and Countermeasures in Computer Networks Protocols. In
IEEE Communications Surveys and Tutorials, pages 9(3):44–
57, 2007.

[11] P. B. S. Zander, G. Armitage. Covert Channels and Counter-
measures in Computer Networks Protocols. In IEEE Com-
munications Magazine, pages 45(12):136–142, 2007.

[12] C. S. Serdar Sabuk, Carla E. Brodley. IP covert timing chan-
nels: design and detection. In Proceedings of the 11th ACM
conference on Computer and Communication Security, pages
178–187, 2004.

[13] A. E. Song Li. A Network Layer Covert Channel in Ad-hoc
Wireless Networks. In Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on, Oct. 2004.

[14] D. Stodle. Ptunnel - Ping Tunnel.
http://www.cs.uit.no/daniels/PingTunnel, 2005.

[15] Z. Trabelsi. A novel covert channel based on the IP header
record route option. In International Journal of Advanced
Media and Communication, pages 328–350, 2007.

[16] S. G. H. Wang. Detecting Covert Timing Channels:
An Entropy-Based Approach. . In Proceedings of 14th
ACM Conference on Computer and Communication Secu-
rity(CCS), pages 9(3):44–57, 2007.

[17] J. C. M. William K. Geissler. Exploiting error control in
network traffic for robust, high rate covert channels. Interna-
tional Journal of Electronic Security and Digital Forensics,
1(2):180–193, Jan. 2007.

[18] R. K. C. C. X. Luo, E. W. W. Chan. TCP Covert Tim-
ing Channels: Design and Detection. In Proceedings of

IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2008.

7

